560 research outputs found

    Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core

    Get PDF
    AbstractHuman immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures

    Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014-2017

    Get PDF
    BACKGROUND: Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS: Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS: The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION: Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine

    Planetary companions around the metal-poor star HIP 11952

    Full text link
    Aims. We carried out a radial-velocity survey to search for planets around metal-poor stars. In this paper we report the discovery of two planets around HIP 11952, a metal-poor star with [Fe/H]= -1.9 that belongs to our target sample. Methods. Radial velocity variations of HIP 11952 were monitored systematically with FEROS at the 2.2 m telescope located at the ESO La Silla observatory from August 2009 until January 2011. We used a cross-correlation technique to measure the stellar radial velocities (RV). Results. We detected a long-period RV variation of 290 d and a short-period one of 6.95 d. The spectroscopic analysis of the stellar activity reveals a stellar rotation period of 4.8 d. The Hipparcos photometry data shows intra-day variabilities, which give evidence for stellar pulsations. Based on our analysis, the observed RV variations are most likely caused by the presence of unseen planetary companions. Assuming a primary mass of 0.83 M\odot, we computed minimum planetary masses of 0.78 MJup for the inner and 2.93 MJup for the outer planet. The semi-major axes are a1 = 0.07 AU and a2 = 0.81 AU, respectively. Conclusions. HIP 11952 is one of very few stars with [Fe/H]< -1.0 which have planetary companions. This discovery is important to understand planet formation around metal-poor starsComment: Published in A&

    Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio parahaemolyticus </it>is a common cause of foodborne disease. Beginning in 1996, a more virulent strain having serotype O3:K6 caused major outbreaks in India and other parts of the world, resulting in the emergence of a pandemic. Other serovariants of this strain emerged during its dissemination and together with the original O3:K6 were termed strains of the pandemic clone. Two genomes, one of this virulent strain and one pre-pandemic strain have been sequenced. We sequenced four additional genomes of <it>V. parahaemolyticus </it>in this study that were isolated from different geographical regions and time points. Comparative genomic analyses of six strains of <it>V. parahaemolyticus </it>isolated from Asia and Peru were performed in order to advance knowledge concerning the evolution of <it>V. parahaemolyticus</it>; specifically, the genetic changes contributing to serotype conversion and virulence. Two pre-pandemic strains and three pandemic strains, isolated from different geographical regions, were serotype O3:K6 and either toxin profiles (<it>tdh+</it>, <it>trh</it>-) or (<it>tdh-</it>, <it>trh</it>+). The sixth pandemic strain sequenced in this study was serotype O4:K68.</p> <p>Results</p> <p>Genomic analyses revealed that the <it>trh</it>+ and <it>tdh</it>+ strains had different types of pathogenicity islands and mobile elements as well as major structural differences between the <it>tdh </it>pathogenicity islands of the pre-pandemic and pandemic strains. In addition, the results of single nucleotide polymorphism (SNP) analysis showed that 94% of the SNPs between O3:K6 and O4:K68 pandemic isolates were within a 141 kb region surrounding the O- and K-antigen-encoding gene clusters. The "core" genes of <it>V. parahaemolyticus </it>were also compared to those of <it>V. cholerae </it>and <it>V. vulnificus</it>, in order to delineate differences between these three pathogenic species. Approximately one-half (49-59%) of each species' core genes were conserved in all three species, and 14-24% of the core genes were species-specific and in different functional categories.</p> <p>Conclusions</p> <p>Our data support the idea that the pandemic strains are closely related and that recent South American outbreaks of foodborne disease caused by <it>V. parahaemolyticus </it>are closely linked to outbreaks in India. Serotype conversion from O3:K6 to O4:K68 was likely due to a recombination event involving a region much larger than the O-antigen- and K-antigen-encoding gene clusters. Major differences between pathogenicity islands and mobile elements are also likely driving the evolution of <it>V. parahaemolyticus</it>. In addition, our analyses categorized genes that may be useful in differentiating pathogenic Vibrios at the species level.</p

    Chromospheric activity, lithium and radial velocities of single late-type stars possible members of young moving groups

    Get PDF
    We present here high resolution echelle spectra taken during three observing runs of 14 single late-type stars identified in our previous studies (Montes et al. 2001b, hereafter Paper I) as possible members of different young stellar kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr), Hyades supercluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial velocities have been determined by cross correlation with radial velocity standard stars and used together with precise measurements of proper motions and parallaxes taken from Hipparcos and Tycho-2 Catalogues, to calculate Galactic space motions (U, V, W) and to apply Eggen's kinematic criteria. The chromospheric activity level of these stars have been analysed using the information provided for several optical spectroscopic features (from the Ca II H & K to Ca II IRT lines) that are formed at different heights in the chromosphere. The Li I 6707.8 AA line equivalent width (EW) has been determined and compared in the EW(Li I) versus spectral type diagram with the EW(Li I) of stars members of well known young open clusters of different ages, in order to obtain an age estimation. All these data allow us to analyse in more detail the membership of these stars in the different young stellar kinematic groups. Using both kinematic and spectroscopic criteria we have confirmed PW And, V368 Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local Association and V834 Tau, pi^{1} UMa, and GJ 503.2 as members of the Ursa Major group. A clear rotation-activity dependence has been found in these stars.Comment: Latex file with 19 pages, 7 figures tar'ed gzip'ed. Full postscript (text, figures and tables) available at http://www.ucm.es/info/Astrof/p_skg_stars_I_fv.ps.gz Accepted for publication in: Astronomy & Astrophysics (A&A

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Things Are Getting Hairy: Enterobacteria Bacteriophage vB_PcaM_CBB

    Get PDF
    Enterobacteria phage vB_PcaM_CBB is a jumbo phage belonging to the family Myoviridae. It possesses highly atypical whisker-like structures along the length of its contractile tail. It has a broad host range with the capability of infecting species of the genera Erwinia, Pectobacterium, and Cronobacter. With a genome of 355,922 bp, excluding a predicted terminal repeat of 22,456 bp, phage CBB is the third largest phage sequenced to date. Its genome was predicted to encode 554 ORFs with 33 tRNAs. Based on prediction and proteome analysis of the virions, 29% of its predicted ORFs could be functionally assigned. Protein comparison shows that CBB shares between 3338% of its proteins with Cronobacter phage GAP32, coliphages PBECO4 and 121Q as well as Klebsiella phage vB_KleM_Rak2. This work presents a detailed and comparative analysis of vB_PcaM_CBB of a highly atypical jumbo myoviridae phage, contributing to a better understanding of phage diversity and biology.Funding was provided by Cork Institute of Technology as a PhD fellowship to CB

    Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources

    Get PDF
    Campylobacter jejuni causes gastroenteritis with a variety of symptoms in humans. In the absence of a suitable animal model, in vitro models have been used to study virulence traits such as invasion and toxin production. In this study, 113 C. jejuni isolates from poultry and poultry-related (n=74) environments as well as isolates from human cases (n=39) of campylobacteriosis and bacteraemia were tested for invasiveness using INT 407 cells. The method was sufficiently reproducible to observe a spectrum of invasiveness amongst strains. As a result, strains were classified as low, high and hyper-invasive. The majority of strains (poultry and human) were low invaders (82 % and 88 %, respectively). High invasion was found for 5 % of human strains and 11 % of poultry-related isolates. However, only 1 % of poultry strains were classified as hyperinvasive compared to 13 % of human isolates (P=0.0182). Of those isolates derived from the blood of bacteraemic patients, 20 % were hyperinvasive, though this correlation was not statistically significant. An attempt was made to correlate invasiveness with the presence of seven genes previously reported to be associated with virulence. Most of these genes did not correlate with invasiveness, but gene cj0486 was weakly over-represented, and a negative correlation was observed for the gene ciaB. This trend was stronger when the two genes were analysed together, thus ciaB– cj0486+ was over-represented in high and hyperinvasive strains, with low invaders more commonly found to lack these genes (P=0.0064)
    corecore